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1. In t roduc t ion 

' The biggest application of today's most powerful general-purpose computers is for scientific 
and mathematical computations. These notes discuss how it should be possible to do many of 
these computations much better with the Connection Machine. 

The point of most scientific computations is to work out how physical systems will behave. 
Usually the computations correspond essentially to explicit simulations of the behaviour of the 
physical systems. (There are fundamental reasons to expect that the evolution of physical sys
tems is often "computationally irreducible", so that such explicit simulation is the only possible 
procedure.) The structure of the computations required then depends on the structure of the phy
sical system studied. Now most physical systems of interest can be considered to consist of a large 
number of identical components, such as molecules in a gas. When such systems are simulated on 
standard serial-processing computers, each component must be treated in turn. But a parallel-
processing computer such as the Connection Machine can process information in a way much 
closer to that of the physical system itself, and can treat computations for many components in 
parallel. 

Another feature of physical systems is that the interactions between components tend to be 
local; as a consequence, the computations required are much like those in a cellular automaton -
they can be implemented on a finite-dimensional lattice, without additional long-range connec
tions. As a consequence, it should be possible to write programs for them without addressing the 
problems of parallel processing in full generality. 

The vast majority of large-scale scientific computations involve the solution of partial 
differential equations. Most often, these equations are for the behaviour of some form of fluid. 
Although fluids are ultimately made from discrete molecules, the equations approximate them by 
continuous macroscopic variables. Whenever the equations are simulated on a digital computer, 
some form of discrete approximation must however be made. Conventional numerical analysis 
takes a discrete grid in space and time, but leaves the variables at each site as high-precision 
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floating point numbers. Conventional algorithms for solving partial differential equations then 
involve extensive arithmetic with these floating point numbers. Since the Connection Machine has 
no specific hardware for such arithmetic, it is comparatively inefficient for such algorithms. How
ever, I will discuss below an approach to solving partial differential equations which involves few 
standard arithmetic operations, and should be implemented very efficiently on the Connection 
Machine. The approach is based on cellular automata, and can be considered as intermediate 
between a simulation of molecular dynamics and the standard continuous partial differential equa
tions. Essentially the information say on fluid density that is usually given as a real number at a 
single lattice site is represented by an average of the values of several sites each with a discrete 
set of possible values. A new, statistical, form of numerical analysis is needed to analyse these 
algorithms. I will describe the progress on this so far below. 

2. Frontier scientific computations 

Here is a list of some current significant basic scientific research problems that the Connec
tion Machine should be able to make progress on. 

A. Fluid tu rbu lence 

Complicated irregular, or turbulent, flow is very common, and is important for many tech
nological applications such as aerodynamics. But it is still not known exactly how or why tur
bulence occurs. It has not been possible to solve the Navier-Stokes partial differential equations in 
systems with realistic fully-developed turbulence. The best current simulations approximate the 
equations on 256x256x256-site grids. The physics is such that fluid motion on very large scales 
is essentially determined by overall boundary conditions, and on very small scales is smoothed out 
by viscous effects. Current simulations really do not have enough grid points to see an intermedi
ate ("inertial") range of scales, on which true turbulence can occur. And in fact it is not known 
what the fundamental mathematical mechanism for turbulence is. The nature of the mechanism is 
important in determining the kinds of approximations that can be made in solving the fluid equa
tions, while still correctly reproducing turbulence. 

One explanation for turbulence is that it results from amplification of external noise or per
turbations on the system. There is evidence that this is part of the story, but the fact that experi
ments in liquid helium have yielded almost exactly repeatable complicated patterns of flow shows 
that it is not the whole story. The second explanation, now popular through studies of strange 
attractors and so-called "deterministic chaos", is that the flow is arbitrarily sensitive to initial 
conditions. Given a real number as the initial data, the pattern of flow progressively "excavates" 
more and more digits in this real number. So to reproduce turbulence one would need to work 
with arbitrary precision real numbers. In addition, with either of these two explanations, one 
could not in practice expect to find the form of the flow in any particular case, because it would 
be determined by unknown small details of initial conditions. In fact, it is neither necessary nor 
probably necessary to know the exact, irregular, flow. What is needed is to know statistical aver
ages that capture what regularities do exist in the flow. 

I have recently come up with a third explanation for turbulence (that concurrs with intui
tion from many numerical fluid experiments, but could not be formalized before). I think that 
fluids can act much like pseudorandom number generators, producing complicated and apparently 
random patterns of flow even from simple initial conditions, analogous to the simple "seeds" of 
pseudorandom number generators, or simple "keys" for cryptographic systems. This phenomenon 
is very common in cellular automata, and there is every reason to expect that it is also present in 
real fluids. And with this explanation, it suffices to use discrete approximations to reproduce the 
fundamental features of turbulence. 

I am not sure exactly what the best system to simulate turbulence in is. The Taylor-Green 
vortex has been a popular one, but it may be too special for standard fully-developed turbulence 
to occur. However, it might be a good one to start on, not least because new results could be 
checked against old ones. There are several specific questions of interest. First, can classical 
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fully-developed turbulence occur in the simulations at all? (Perhaps the Navier-Stokes equations 
just break down in the turbulent regime, and one must use explicit molecular dynamics.) Do the 
Kolmogorov dimensional scaling laws work? And what corrections, due for example to intermit-
tency, occur? Then one can ask about the sensitivity of the flow to perturbations. Do all perturba
tions grow exponentially in size (so that they have positive Lyapunov exponents)? Or are (as I 
suspect) sufficiently small perturbations effectively damped, at least if one looks at features of the 
flow above some small length scale? In addition, what level of discrete approximation suffices to 
reproduce what features of the flow? The coarser the approximation that nevertheless reproduces 
relevant features, the more useful it will be for practical engineering purposes. Finally, does the 
flow really behave like a pseudorandom number generator, as I claim? Are the statistics of flows 
with very simple initial conditions indistinguishable from those with more complicated initial con
ditions? 

B. Lattice spin sys tems 

Lattice spin systems are used to model a variety of statistical mechanics systems such as fer-
romagnets. Scale invariance implies that their properties at least at certain phase transitions are 
universal across many different systems. Some properties of some of these universality classes have 
by now been well studied, mostly by computer simulation (in only a very few cases are exact 
analytical solutions known). But computer simulations have so far been inadequate to investigate 
other classes. In addition, typically only very gross statistical properties have been studied. There 
has been rather little study of either time-dependent (dynamic) phenomena, relating for example 
to the approach to thermodynamic equilibrium, or of spatial patterns such as domain wall struc
tures. 

The simplest spin systems of interest are Ising models, consisting of a lattice of identical 
spins, each with two possible states, and each interacting only with their nearest neighbours. An 
analytical solution is know for the two-dimensional Ising model. The three-dimensional Ising 
model has been much studied numerically, and it seems that only details remain to be found. But 
there are many generalizations of the Ising model that should be studied further. Some generali
zations (e.g. Potts models) take more possible values for each site. Other consider longer range 
interactions. And still others make the system inhomogeneous, taking different randomly-chosen 
interaction strengths for couplings between spins at different positions. Such generalizations are 
known as spin glasses, and are found to have very rich behaviour. 

One of the first questions about a spin system is whether it exhibits a phase transition. If so, 
what type of phase transition? And what is the relevant order parameter (macroscopic quantity 
analogous to magnetization for a ferromagnet that identifies different phases)? 

To find the behaviour of a spin system in thermal equilibrium, one must sample its possible 
configurations, weighted with the appropriate probabilities for thermal equilibrium. A method 
that has been used extensively is to start from one configuration, then move to other 
configurations by making perturbations determined by a pseudorandom number generator, and 
thereby obtain a Monte Carlo sampling of configurations. A promising recently-proposed method 
instead uses deterministic cellular automaton rules to move from one configuration to another. 
(This procedure mimics the actual physics of spin relaxation in the case where interactions 
between spins dominate interactions with lattice vibrations; it effectively generates randomness 
through an autoplectically.) To get accurate results, one must sample as many configurations as 
possible, and these configurations must be as uncorrelated as possible. But even given the 
configurations there is also substantial computational work involved in computing statistical aver
ages, for example of candidate order parameters, particularly when these are complicated non
local quantities that depend on the values of many spins. 

The fastest code for computers like the Cray-1 updates about 107 sites per second in a stan
dard Ising model, using a Monte Carlo approach, and about 108 sites per second using the cellular 
automaton approach. Special purpose shift-register-based computers have built for doing these 
simulations (one at Santa Barbara, one at AT&T Bell Labs); both run at about the same speed as 
the Cray-1. The Connection Machine should be able to do perhaps a factor of a thousand better. 
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There are some specific questions about spin systems that would be of particular interest. 
The most significant probably concern spin glasses, or certain imitations of them. One of these 
imitations is the random field Ising model - an Ising system with an external magnetic field ran
domly applied at each site. An important question, not yet answered definitively, is whether there 
is a phase transition in this model in two space dimensions. For spin glasses, it is important to 
try and find out what order parameters characterize the phase transitions which physical experi
ments suggest are present. And to try and determine the answer to related questions about the 
exponentially large number of metastable states that appear to be present, and lead to a very 
slow approach to thermal equilibrium. 

I suspect in fact that it is in general formally undecidable whether a spin system exhibits a 
phase transitions, so that there is no upper bound on the amount of computation required for any 
particular case. And in fact it seems that much computation is often required. There are some 
partially analytical methods (relying for example on series expansions) known, but direct simula
tion is usually best for addressing fundamental questions of interest. 

C. Lattice quantum field theories 

Through the path integral formulation quantum field theories can be put in a form that is 
mathematically analogous to spin systems. Like partial differential equations, however, they are 
intrinsically continuous systems, but must be approximated for digital simulation by discrete 
four-dimensional lattices. The most interesting case for study is quantum chromodynamies (QCD), 
the theory of quarks and gluons. A fundamental question is whether this theory implies absolute 
confinement of quarks and gluons into the observed hadrons (such as protons and pions). Such 
confinement is related to the absence of a phase transition between the regime of strong coupling 
covered by certain approximations, and the weaker coupling regime realized in practice. There is 
strong experimental evidence for confinement, and some theoretical evidence. Calculations with 
QCD should in principle allow properties of particles such as protons to be calculated theoreti
cally. But in practice simulations have used lattices which are too small for very useful results to 
have been obtained (typically at most 164 sites). 

There are two very different kinds of computations done in studying QCD: those with 
quarks (or other fermions), and those just with gluons (which as bosons). When only gluons are 
considered, the quantum field configurations can be sampled much as in a spin system. In this 
case, however, the "spins" are continuous variables (representing the "direction" of the gluon 
field at each point in the internal gauge group space). But these may be well approximated by a 
discrete set of possible values - 4 or 5 bits per site seems to suffice. (In fact, the possible values 
are best taken to be elements of finite subgroups of the continous gauge group, or elements of pro
ducts of such subgroups.) This discrete approximation is adequate in the strong and intermediate 
coupling regions of most practical interest; but in the weak coupling region where contact might 
be made with perturbation theory results, the site values are close to one, and more accuracy is 
needed. (If only a few site values are allowed, fake freezing phase transitions are found.) 

When quarks (or other fermions) are included, things become much more complicated. 
There are global constraints on the possible configurations, resulting roughly from the Pauli exclu
sion principle, which applies to fermions, but not bosons. In sampling configurations one must find 
inverses of large matrices. Nevertheless, at least in one approximation, these inverses can be found 
by calculating the Green's function for the Dirac differential operator using an iterative local 
relaxation method. However, it seems that higher numerical accuracy must be maintained in such 
calculations. Of course, one must work with quarks if one is to find out the properties of particles 
such as protons or pions which contain them. 

There is considerable theoretical interest in further studies of the pure gluon system. One 
would like to have a better qualitative picture of the structure of the ground state for the system. 
A few gross properties of it have been investigated; but the overall strucutre remains the subject 
of speculation. (In fact, a better understanding may require not so much extensive lattice gauge 
theory computation as sophisticated graphics to visualize the results.) Then there is the question 
of excitations, which represent particle states ("glueballs"). Finding for example the masses of 
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such objects requires measuring exponentially-decaying correlations between different parts of the 
lattice. It seems that at least 24 bit numerical accuracy is needed in forming these averages for 
useful results to be obtained. In current simulations, the computer time spent finding averages is 
comparable to that spent in updating the spins (0(1O4) sweeps are typically done in total); to 
obtain better statistics it is important to make more sweeps over the lattice to remove correla
tions between successive configurations sampled, which give non-Gaussian errors. 

In addition to QCD, a lattice quantum field theory that is now attracting attention is a ver
sion of quantum gravity based on discrete triangulations of spacetime called Regge skeletons. Here 
the problem is to enumerate a large number of objects best represented as graphs; the Connection 
Machine, using long-range connections, may be very suitable for this. First one must check that 
weak field approximation phenomena, such as gravitational waves, can be recovered in the model. 
Then one should be able to tackle a fundamental current problem: why the effective energy den
sity in the universe as it affects gravitation is so small, even though zero point fluctuations in 
quantum fields should make it very large (or infinite). To address this question, one should com
pute the expectation value of the Ricci scalar curvature as a function of temperature (correspond
ing to inverse periodicity in the imaginary time direction) or matter density in a model universe. 
These necessary calculations will undoubtedly be most lengthy, but there is probably still some 
more exploratory work to be done. 

D. n-body problems 

This is a class of problems that concern the motion of bodies, usually approximated as point 
particles, interacting through various force laws. They involve the solution of sets of coupled 
ordinary differential equations, with typically one equation for each particle. Parallel processing 
should be worthwhile if there are many particles. However, current methods require solving the 
equations using standard numerical analysis in terms of high-precision (though usually fixed point) 
numbers. 

Classic n-body problems concern the motion of several bodies interacting through gravia-
tional forces. Thus for example a problem that remains of current interest is to simulate the evo
lution of the solar system, and to determine for example whether it is stable. Related problems 
concern calculations for example of asteroid motion, which is in some cases expected to be 
chaotic, rather than regular and periodic. In the past, the most effective methods for celestial 
mechanics used symbolic methods in terms of the Fourier transforms (Poisson series) of orbits; but 
it seems that direct simulations are now becoming the better method. 

Another class of few body problems concern the structure of medium-sized molecules, and 
the dynamics of reactions between them. These problems involve solution of the Schrodinger 
equation. In finding molecular structures, eigenvalues of large matrices must be found (with 
matrix elements representing weights of different basis states in a variational wave function). In 
studying reactions, one solves many coupled ordinary differential equations for complex wave 
functions. 

An important class of problems concern the statistical, aggregate, behaviour of collections of 
very large numbers of particles. Two rather different cases occur: those in which the forces are of 
short range so that particles can be considered to interact through collisions involving a small 
number of bodies, and those in which the forces have a long range, so that many particles have a 
continuing effect on the motion of each particle. The forces between molecules, say in a liquid, are 
short range. Those due to gravity between stars in a galaxy are long range. Those between ions or 
electrons in a plasma are fundamentally long range, but the screening of charges in such systems 
makes them effectively short range for most practical purposes. In all n-body problems, whether 
short or long range forces are involved, the fundamental problem is to simulate the motions of as 
many particles as possible. 

Probably the most important current n-body problem with short range forces concerns the 
structure of liquids. There are theoretical suspicions that molecules in liquids are often ordered, 
something like in a crystalline solid, but following an irregular lattice, perhaps based on 
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tesselations of icosahedra. I think there is a need for more extensive simulations to study these 
questions (which are often investigated by analogue models, such as bags of plasticene balls), 
though many of them may be quite feasible with standard computers. 

But it is the gravitational n-body problem that is the most challenging. What is the 
behaviour of a self-gravitating gas, for example of stars in a galaxy or globular cluster, or of den
sity perturbations during galaxy formation in the early universe? Unlike a conventional gas that 
follows the Second Law of thermodynamics, self-gravitating gases can start from disordered states 
and end up clumped in rather ordered ways. How this happens is just not known. There are some 
linear analytical approximations, but the full problem must be investigated by numerical simula
tion. And existing simulations have not had enough particles, or been done for enough time, to see 
any form of equilibrium attained. The calculations are difficult, and it is not clear to what extent 
high precision numbers must be used in them. An n particle with long-range interactions could 
require 0 (n2) calculations for each time step; but there is a hierarchical algorithm which only 
needs O(n logn ) calculations. (The naivest blocking procedures nevertheless apparently give 
incorrect answers.) The general problem to find out the overall behaviour of self-gravitating gases. 
Does an analogue of the Second Law of thermodynamics hold? (One suspects that the usual 
Second Law does hold in some form, but with entropy carried by the gravitational field.) If so, 
what is the form of the equilibrium ensemble? 

E. Cellular automata 

Cellular automata seem to capture the mathematical essence of many complex natural sys
tems, including several of those discussed above, and they are very directly amenable to efficient 
simulation on the Connection Machine. 

We have made extensive studies of one-dimensional and to some extent two-dimensional cel
lular automata. But we have never had sufficient computer power to make a serious study of the 
three-dimensional ones, which are directly relevant to many physical systems (such as fluids). 
Beyond the computational power necessary to update the cellular automaton configurations, there 
is also the significant problem of displaying three dimensional images, that consist basically of 
arrays of solid blocks with different colours. 

F. Number theory 

The structure of computations in pure mathematics, unlike those in physics, are not deter
mined by the structure of real physical systems, and so need have none of the homogeneity or 
locality of actual physical processes. A? a consequence, it is less clear that they can be imple
mented efficiently through parallel processing. 

A prototypical number theoretical problem, of some interest for public-key cryptographic 
systems, involves factoring large integers into primes. There are a variety of algorithms known, 
with rather different structures, but all taking a time more than polynomial in the number of 

digits of the integer to be factorized. The best known algorithm takes O (e^ ' ' ) time 
(counting only arithmetic operations). It involves several kinds of computations. First, arithmetic 
with integers containing many digits. Second, arithmetic with certain low precision (perhaps 16 
bit) floating point approximation. And third, finding greatest common divisors. Quite a lot is 
known about implementing arithmetic operations in parallel. But gcd appears to have escaped 
parallelization (and may not even be in the complexity class NC). Apparently, the algorithm 
stores many integers, then seives through them looking for ones with small prime factors. Presum
ably this seive could be implemented in parallel. In fact, it seems that the MPP has been used to 
advantage with this algorithm. But at present only numbers with at most about 75 digits can be 
factored. 

There are numbers of several special forms whose factorization might be of interest. The 
best known are Mersenne numbers, of the form 2 " - l . In general, it is not clear that there is 
much fundamental interest in factoring numbers per se. But there is a $100 prize on oiler for the 
first group to factor a 125 decimal digit number. 
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There are several other kinds of number theoretical problems. One could look for zeroes of 
the Riemann zeta function outside the critical strip; but though it has not been proved, it seems 
unlikely that one would find any. Or one could say compute more digits of t - 2s6 have been 
worked out so far, and seem to pass all the statistical tests of randomness that have been applied 
to them, though there is no proof that they must. 

3. Production scientific computations 

4. Conclusions and recommendations 
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